Tetrahedron Letters No.49, pp. 4999-5002, 1967. Pergamon Press Ltd. Printed in Great Britain.

ORGANIC MASS SPECTROMETRY IX*. THE REDUCTIVE REACTION OF 1,2-QUINONES IN THE MASS SPECTROMETER

> Shigeo Ukai, Kazuo Hirose (Gifu College of Pharmacy, Mitahora, Gifu)

> > anđ

Akira Tatematsu

(Faculty of Pharmacy, Meijo University, Showa-ku, Nagoya)

and

Toshio Goto

(Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya)

(Received in Japan 24 July 1967)

Mass spectrometry of 1,4-quinone derivatives has been investigated by several workers (1-9). During the investigation of mass spectrometry of 1,2-benzoquinones and 1,2-naphthoquinones, we found that the M+2 peak appears

Table I The Relative Intensities of the M[‡] and M+2 Peaks in the Spectra of 1,2-Quinones (Heating Inlet 230°C).

0	Compds.	R	R'	м:	M+l	M+2	Base peak
\sim	I	CH ₃	н	100	77	92	M÷
R	II	SCH3	н	2	3	100	M+2
R	III	SCH3	осн _з	6	10	38	M-CO
O	IV	н	-	27	6	22	M-00
	v	0СН3	-	5	1	6	м-00
	VI	SCH3	-	17	7	16	M-00
Ŕ	VII	s-ø	-	17	11	23	M-CO

* Part VIII : A. Tatematsu, H. Yoshizumi, E. Hayashi and H. Nakata, <u>Tetrahedron</u> <u>Letters</u>, <u>1967</u>, No. 31 in press. strongly in the spectra of these compounds. As shown in Table I, M+2 peak in these cases shows a comparable intensity with that of M^{\ddagger} , especially, in the case of 4-methylthio-1,2-benzoquinone (II) the M+2 peak becoming the base peak.

The relative intensities of both molecular and M+2 peaks vary by changing temperature of the ionization chamber and/or by use either an all-glass inlet or a direct inlet system, as shown in Table II. Furthermore, intensity of the M+2 peak increases gradually with time (Fig.1). This tendency is stronger for benzoquinones than for naphthoquinones.

Table II Ratio of Heights of M⁺ and M+2 Peaks in various Temperature.

Compds.	Heating Inlo 230°	et Temp. 130°	Direct Inlet Temp. 120°			
I	52 : 48	58 : 42	57 : 43			
II	2:98	2:98	23 : 77			
III	14 : 86	17 : 83	19 : 81			
IV	55 : 45	83 : 17	76 : 24			
v	45 : 55	9 0 : 10	77 : 23			
VI	52 : 48	69 : 31	70 : 30			
VII	43 : 57	45 : 55	45 : 55			

Fig.l Plots of [(M+2) / M[‡] + (M+2)] in the spectra of the 1,2-quinones at 130°C. vs. time.

5000

From these results, it seems that 1,2-quinones are reduced by moisture in the mass spectrometer to give the M+2 peak. This is supported by the following experiment: when deuterium oxide was introduced in the mass spectrometer before introduction of the sample, strong M+3 and M+4 peaks observed in the spectrum of II thus obtained. Incidentally, that the 1,2-quinones are not contaminated by the corresponding hydroquinones are checked by UV and NMR spectra. From these facts, it is suggested that the compounds which have a high oxidation potential such as 1,2-quinones may be reduced by moisture in the mass spectrometer.

In the case of 1,4-naphthoquinones (1) appearance of appreciable M+2 peak has not been pointed out (10). 1,4-Benzoquinones (2) usually give M+2 peak, whose intensity is slightly stronger than that calculated from the natural abundance, but it is rare case that the intensity of M+2 peak exceeds one tenth of that of M⁺ peak (8). It was reported (5,6,9) that some of 1,4-benzoquinone derivatives having an unsaturated side chain, such as plastoquinones and ubiquinones, gave a fairly intense M+2 peak in their mass spectra, whereas no M+2 peak was observed in the spectra of the corresponding guinones having a saturated side chain. Interestingly, a compound, which gives intense M+2 peak (67 % of M^t peak), reported by Aplin et al.(8) has an unsaturated side chain. It was also suggested by Aplin et al. that in the 1,4-quinone spectra water is the probable origin of the hydrogen molecule responsible for the M+2 peak. In these cases, however, role of the unsaturated side chain has not been clarified.

Detailed fragmentation patterns of these 1,2-quinones will be reported elsewhere.

All spectra of the present work were measured by Hitachi RMU-6E Type double-focussing mass spectrometer, using an all-glass heated inlet and a direct inlet system. The ionizing energy was kept at 70 eV. and the ionizing total current at 80 µA.

REFERENCES

- J. H. Bowie, D. W. Cameron, D. H. Williams, J. Amer. Chem. Soc., <u>87</u>, 5094 (1965).
- (2) J. H. Bowie, D. W. Cameron, R. G. F. Giles, D. H. Williams, <u>J. Chem. Soc.</u>
 (<u>B</u>), <u>1966</u>, 335.
- (3) D. Becher, C. Djerassi, R. E. Moore, H. Singh, J. Scheuer, <u>J. Org. Chem.</u>, <u>31</u>, 3650 (1966).
- (4) J. H. Bowie, D. W. Cameron, J. Chem. Soc. (B), 1966, 684.
- (5) H. Morimoto, T. Shima, I. Imada, M. Sasaki, A. Ouchida, <u>Ann.</u>, <u>702</u>, 137 (1967).
- (6) B. C. Das, M. Lounasmaa, C. Tendille, E. Lederer, <u>Biochem. Biophys. Res.</u> <u>Commun.</u>, <u>21</u>, 318 (1965).
- (7) J. W. Lown, A. S. K. Aidoo, Canad. J. Chem., <u>41</u>, 2509 (1966).
- (8) R. T. Aplin, W. T. Pike, Chem. & Ind., 1966, 2009.
- (9) R. F. Muraca, J. S. Whittick, G. D. Daves, Jr., P. Friis, K. Folkers, <u>J.</u> <u>Amer. Chem. Soc.</u>, <u>89</u>, 1505 (1967).
- (10) The mass spectra of some of 1,4-quinones measured by us, however, showed slightly larger M+2 peak than that calculated from natural abundances.